Reflected Solar Calibration Demonstration System - SOLARIS

RS instrument

Reflectance must be traceable to SI standards at an absolute uncertainty < 0.3%

- Spectral range from 320 to 2300 nm
- 500-m GIFOV
- 100-km swath width
- Goal of sensor design is to reduce of complexity for accurate calibration
- Offner spectrometer with two separate entrance apertures
- Commonality of design of two boxes aids in calibration

Operating Modes

 Reflectance obtained from ratio of radiance viewing earth's surface to measurements of irradiance while viewing the sun

 Three basic operating modes for RSS instrument

- Nadir Data Collection (>90% data collection time)
- Solar Calibration
- Inter-calibration of other onorbit assets
- Verification of calibration drives the need for lunar views

Reflectance approach

- Retrieve reflectance via ratio of earth-view data to solar-view data
 - Single detector scans entire solar disk
 - Response of ith detector is

$$R_{i,\lambda}^{sensor} = \frac{\sum_{x_{solar}} \sum_{y_{solar}} S_{i,\lambda}^{solar}(x'_{solar}, y'_{solar})}{(T_{attenuator} A_{attenuator}) E_{solar}}$$

 Bidirectional reflectance distribution function (BRDF) is

Calibration approach

Successful transfer to orbit through accurate prediction of sensor behavior

Key error terms

Developed a preliminary error budget based on a nominal design for the RS sensor

- Key uncertainties are
 - Geometry differences between the solar and earth views
 - Knowledge of attenuator behavior when viewing sun
 - Sensor behavior
 - Detector linearity
 - Noise behavior
 - Polarization

$$BRDF_{i,\lambda}^{\; earth} = \frac{S_{i,\lambda}^{\; earth}}{R_{i,\lambda}^{\; sensor} A_{sensor} \Omega_{sensor}} \frac{(T_{attenuator} A_{attenuator}) \langle R_{\lambda}^{\; sensor} \rangle}{\cos \theta_{solar} \sum_{k} \sum_{l} S_{k,l}^{\; solar} r_{k,\lambda}^{\; flat \; field}} \frac{a_{sensor}^{\; straylight} \alpha_{sensor}^{\; straylight}}{r_{i,\lambda}^{\; nonlinearity} r_{i,\lambda}^{\; polarization}}$$

Aerospace Error Budget

- Aerospace study led to estimated error budget
 - Based on earth view/solar ratio, i.e. reflectance
 - Assumed typical, available facilities in commercial vendors
- Solar attenuator factor
 is uncertainty caused
 attenuator behavior
- Earth and solar view errors are uncertainties in those measurements

SI traceability and Stray Light

SIRCUS-based Error Budget

Radiometric un calibration ref requirements of RS instrument can be met with currently-available approaches

 Requires inclusion of NIST-based methods

Detector-based L
 transfer radiometers

- Narrow-band SIRCUS aproaches
- Hyperspectral image projectorbased scene projections

Calibration Demonstrator System

- SOlar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS)
 - Technology demonstration of
 - Thermal control of attenuators and detector
 - Design and production of optics
 - Depolarizer technology
 - Test prelaunch calibration methods
 - Evaluate reflectance retrieval
 - Demonstrate transfer-to-orbit error budget showing SI-traceability

CDS – Calibration protocols

Calibration demonstrator provides tests of laboratory characterization approaches

- Robust, portable tunable-laser facility including transfer radiometers with sufficient spectral coverage
- Broadband stray light and polarization systems of sufficient fidelity
- Depolarizer technology
- Thermal control of attenuators and detector needs to be proven
- Development of physically-based spectrometer models including well-understood error budgets

CDS - Reflectance retrieval

Operating demonstrator in the field will provide check on instrument models

- Retrieve reflectance by taking the ratio of the solar irradiance and the signal from the scene
 - Instrument model development for stray light and other geometric effects
 - Correction techniques for solar attenuators
- Validation of reflectance done in laboratory & field
 - Currently available laboratory equipment
 - Compare with state-of-the art field approaches
- Sea level and mountain-top observations of sun and moon
- Cross-comparisons with other system

CDS - SI traceability and transfer to orbit

Develop and check calibration protocols and methods

SOLARIS Silicon Detector

Detector Hybrid in a LCC carrier

Ceramic Boards Bonded Together

Thermal Testing – The boards were cycled to 373 K for 2 hours, then 173 K for 2 hours with no damage

Optical Components

First unit grating replica

Optics set in shipping container

Complete Main Housing with Telescope Assembly

Telescope PSF Measurement Setup

Telescope modeled image at the slit

Measured point spread function

Depolarizer Output Image

490 nm wavelength 10 nm bandpass filter Image of 5 micron pinhole through depolarizer

Result matches analytical prediction

Left right spot separation 22 microns (10 pixels) Top bottom spot separation 60 microns (27 pixels) Pixel pitch 2.2 microns

Thermal and Data Control Racks and tripod mount

Cleanrooms in OCL for CDU Assembly + Cal

CDS Integration, Test, & Cal. Flow

Summary

SOLARIS CDS will play a key role demonstrating CLARREO-quality error budgets

- Collaborative efforts with NIST continue to be critical
 - "Operational" use of SIRCUS
 - Extension to wavelengths >1 micrometer
 - Broadband calibration approaches (HIP)
- Calibration approaches will be demonstrated
 - Hence the "CDS" name
 - Laboratory calibration protocols
 - Error budget demonstration
- Reflectance retrieval
 - Stray light characterization
 - Instrument model assessment

